Photon Counting for GQuEST

Alex Ramirez

Jet Propulsion Laboratory California Institute of Technology

GQuEST Gravity from Quantum Entanglement of Space-Time

GQuEST

Simplified Layout

GQuEST

FIG. 5: Detailed view of experimental optical layout and readout electronics setup

Advanced Layout

Bow-tie Filter Cavities

Current Research Goals

- Develop skills testing and characterizing SNSPDs
- Characterize SNSPD's for GQuEST
- Verify a dark count rate of less than 10e-4 for GQuEST
- Implement the SNSPDs into QQuEST
- Develop a low-cost and low-noise Avalanche Photodiode (APD) circuit for preliminary photon detection in GQuEST

1 K stage with -SNSPD

Filter stack @ 4 K

SNSPD Efficiency Calculations

- PCR = CR SDCR
 - Photon Count Rate (PCR) is the difference between the response pulse count rate (CR) and the dark count rate (SDCR)
- Efficiency = PCR / (Input_Number_of_Photons)
 - For our calculations the input number of photons was 100476

SNSPD Measurement Experimental Setup

F. Marsili, Et al., 2013, Detecting Single Infrared Photons with 93 % System Efficiency: Supplementary Information

Laboratory Setup

Experimental Procedure

DIFF2 and DIFF3 RAW Measurements

Calculated Efficiencies DIFF2/DIFF3

Next Steps: Finding the Uncertainty of the Efficiency Measurements

$$\left(\frac{\sigma_{\text{SDE}}}{SDE}\right) = \sqrt{\left(\frac{\sigma_{\text{PCR}}}{PCR}\right)^2 + \left(\frac{\sigma_{\text{PC}}}{P_{\text{C}}}\right)^2 + 2 \cdot \left(\frac{\sigma_{\alpha_{2,3}}}{\alpha_{2,3}}\right)^2 + \left(\frac{\sigma_{\text{RSW}}}{R_{\text{SW}}}\right)^2}$$

The uncertainty of the System detection efficiency is calculated with the following:

 σ_{PCR} = uncertainty of the photoresponse count rate

 σ_{PC} = uncertainty of the power incident on the control power meter

 $\sigma_{\alpha_{2,3}}$ = uncertainty of the attenuation of attenuator 2, 3

 σ_{RSW} = uncertainty of the splitting ratio of the optical switch

F. Marsili, Et al., 2013, Detecting Single Infrared Photons with 93 % System Efficiency: Supplementary Information

SNSPD for GQuEST

Thank you!

Free-space coupled SNSPD to room temperature

Mueller, Korzh *et al*, **Optica 8**, 1586 (2021)

Efficiency and dark count rate

Mueller, Korzh *et al*, **Optica 8**, 1586 (2021)

Avalanche Photodiode (APD)

APD Circuit Development

Homodyne Detector circuit design: Tomoki Isogai, LIGO_DCC: LIGO-D1300671

Simulating APD's in Spice

Dong Huang Et al., 2013, SPICE modeling for single photon avalanche diode