

MICRO-OPTICS

Axetris AG

INFRARED SOURCES Schwarzenbergstrasse 10

CH-6056 Kaegiswil

MASS FLOW DEVICES

LASER GAS DETECTION

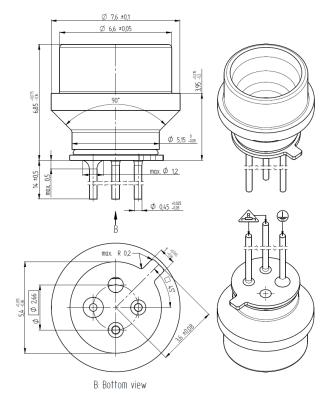
phone +41 41 662 76 76 +41 41 662 75 25 fax

axetris@axetris.com www.axetris.com

EMIRS50 AT06V BR25M

Thermal MEMS based infrared source

For direct electrical fast modulation


TO46 header with Reflector 6

Infrared Source

Axetris infrared (IR) sources are micro-machined, electrically modulated thermal infrared emitters featuring true blackbody radiation characteristics, low power consumption, high emissivity and a long lifetime. The appropriate design is based on a resistive heating element deposited onto a thin dielectric membrane which is suspended on a micro-machined silicon structure.

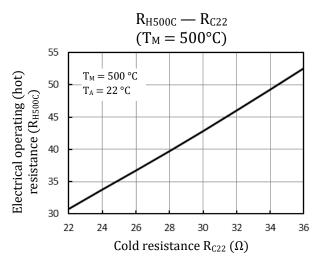
Infrared Gas Detection Applications

- Measurement principles: non-dispersive infrared spectroscopy (NDIR), photoacoustic infrared spectroscopy (PAS) or attenuated-total-reflectance FTIR spectroscopy (ATR)
- Target gases: CO, CO₂, VOC, NO_X, NH₃, SO_X, SF₆, hydrocarbons, humidity, anesthetic agents, refrigerants, breath alcohols
- Medical: Capnography, anesthesia gas monitoring, respiration monitoring, pulmonary diagnostics, blood gas analysis
- Industrial Applications: Combustible and toxic gas detection, refrigerant monitoring, flame detection, fruit ripening monitoring, SF₆ monitoring, semiconductor fabrication
- Automotive: CO₂ automotive refrigerant monitoring, alcohol detection & interlock, cabin air quality
- Environmental: Heating, ventilating and air conditioning (HVAC), indoor air quality and VOC monitoring, air quality monitoring

Features

- Large modulation depth at high frequencies
- Broad band emission
- Low power consumption
- Long lifetime
- True black body radiation (2 to 14 μm)
- Very fast electrical modulation (no chopper wheel needed)
- Suitable for portable and very small applications
- Rugged MEMS design

■ Absolute Maximum Ratings (T_A = 22°C)


Parameter	Symbol	Rating	Unit
Heater membrane temperature ¹	Тм	500	°C
Optical output power (hemispherical spectral) ($T_M = 500^{\circ}$ C)	P ₀₀	4.88	mW
Optical output power between 4 μ m and 5 μ m (T _M = 500°C)	P _{s4-5}	0.78	mW
Optical output power between 6 μ m and 8 μ m (T _M = 500°C)	P _{s6-8}	0.99	mW
Optical output power between 8 μ m and 10 μ m (T _M = 500°C)	P _{s8-10}	0.60	mW
Optical output power between 10 μ m and 13 μ m (T _M = 500°C)	P _{s10-13}	0.49	mW
Electrical cold resistance (at $T_M = T_A = 22$ °C)	R _{C22}	22 to 36	Ω
Electrical operating (hot) resistance ² (at $T_M = 500^{\circ}$ C with $f = \ge 10$ Hz and $t_{on} \ge 3$ ms)	R _{H500C}	1.555 * RC22 - 3.618	Ω
Package temperature	T _P	80	°C
Storage temperature	Ts	-20 to +85	°C
Ambient temperature ³ (operation)	T _A	-40 to +125	°C
Heater area	A _H	0.8 x 0.8	mm ²
Frequency ⁴	f	10 to 100	Hz

Note: Emission power in this table is defined by hemispherical radiation. Stress beyond those listed under "absolute maximum ratings" may cause permanent damage to the device.

Note: Diagram $R_{H500C} - R_{C22} | (T_M = 500^{\circ}C)$

How to ensure that the maximum temperature for $T_{\mbox{\scriptsize M}}$ is not exceeded:

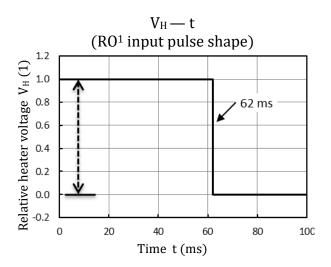
- 1. Determine electrical cold resistance R_{C} of the EMIRS device at TA=22°C
- 2. Ensure that anytime R_H does not exceed the representative limit as shown in this diagram with respect to these conditions:
 - a. $f \ge 10 \text{ Hz}$
 - b. on-time (pulse duration) \geq 3 ms

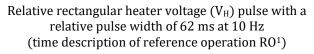
Electrical operating (hot) resistance R_H versus electrical cold resistance R_{C22} at $T_A = 22^{\circ}C$

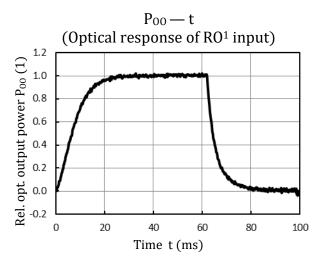
¹ Temperatures above 500°C will impact drift and lifetime of the devices.

² See Diagram $R_H - R_C | (T_M = 500^{\circ}C)$

³ The environmental and package temperature might impact the lifetime and characteristic of the devices.

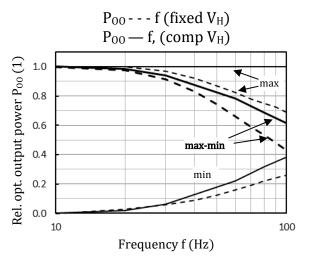

⁴ Lower cut-off frequency of 10 Hz for designed thermodynamic state. DC drive is also possible but recommended with "soft-off" switch.

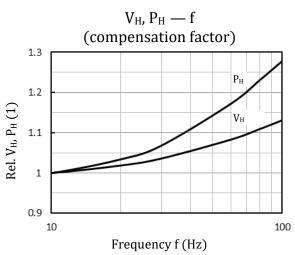



■ Ratings at Reference Operation (RO¹ T_A = 22°C)

Parameter	Symbol	Rating	Unit
Heater membrane temperature	Тм	< 500	°C
Duty cycle of rectangular $V_{\rm H}$ pulse	D	62	%
Frequency of rect. pulse shape ²	\mathbf{f}_{ref}	10	Hz
On time constant of integral emissive power P_{00}	$ au_{on}$	10	ms
Off time constant of integral emissive power P_{00}	$ au_{off}$	5	ms
Package temperature at $T_A = 22^{\circ}C$	T _P	40 to 50	°C

Note: First order on-time model using τ_{on} : First order off-time model using τ_{off} :





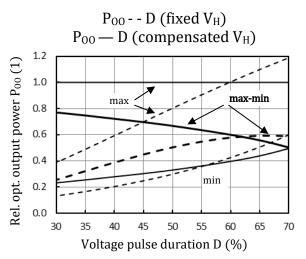
 $^{^1}$ Reference Operation: combines lower cut-off frequency of 10 Hz and maximum modulation depth (max-min signal) 2 Recommended frequencies from 10 Hz to 100 Hz

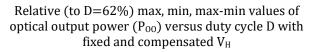
■ Typical Timing Characteristics Frequency (D = 62%)

 $\begin{array}{l} \mbox{Relative (to RO) max, min, max-min values of optical} \\ \mbox{output power (P_{00}) versus frequency f with fixed and} \\ \mbox{compensated } V_{\rm H} \end{array}$

Note: Diagrams a, b <u>Relative</u> P_{00} , V_H , P_H to reference operation (RO) f=10 Hz, rect. pulse D=62%

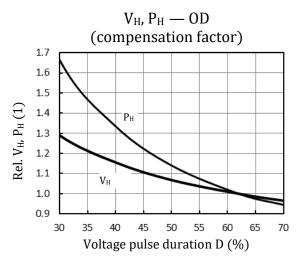
<u>max</u>: maximum value of P_{00} response shape <u>min</u>: minimum value of P_{00} response shape <u>max-min</u>: amplitude calculation of P_{00} resp. shape


Fixed V_H: same voltage for all frequencies.


<u>Compensated</u> V_{H} : for every frequency value, the voltage is adjusted to achieve the same maximum of P_{00} response shape as for 10 Hz.

Relative (to RO) electrical drive values heater voltage $V_{\rm H}$ and power $P_{\rm H}$ versus frequency f for compensation

■ Typical Timing Characteristics Pulse Duration D¹ (f = 100 Hz)



Note: Diagrams a, b <u>Relative</u> P_{00} , V_H , P_H to reference operation (RO) f=100 Hz, rect. voltage pulse

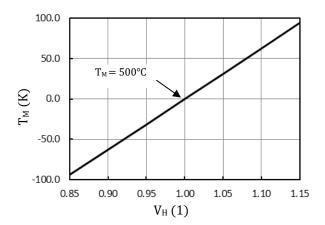
<u>max</u>: maximum value of P_{00} response shape <u>min</u>: minimum value of P_{00} response shape <u>max-min</u>: amplitude calculation of P_{00} resp. shape

Fixed V_H: same voltage for all frequencies.

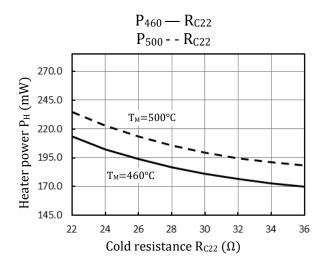
<u>Compensated</u> V_{H} : for every frequency value, the voltage is adjusted to achieve the same maximum of P_{00} response shape as for D=62%.

Relative (to RO) electrical drive values heater voltage V_H and power P_H versus duty cycle D for compensation

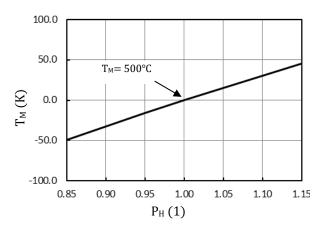
¹ Effective D shorter than 30% and voltage or power compensation at high frequencies (e.g. 20% @ 100 Hz) might impact the lifetime and characteristic of the devices because of additional stress in material layers.


■ Typical electrical/thermal characteristics (RO, T_A = 22°C)

Parameter	Symbol	Rating	Unit
Peak chip membrane temperature	Тм	460	°C
Heater voltage	$V_{\rm H}$	2.69	V
Heater power	$P_{\rm H}$	187	mW

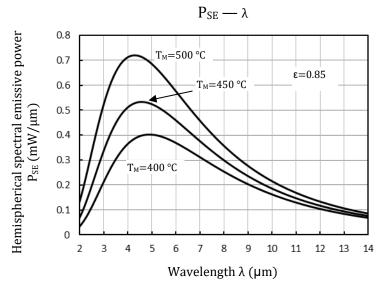


 $\label{eq:mean1} Mean^1 \mbox{ and upper bound of heater voltage } V_H \mbox{ vs. cold} \\ resistance \mbox{ RC}_{22}$

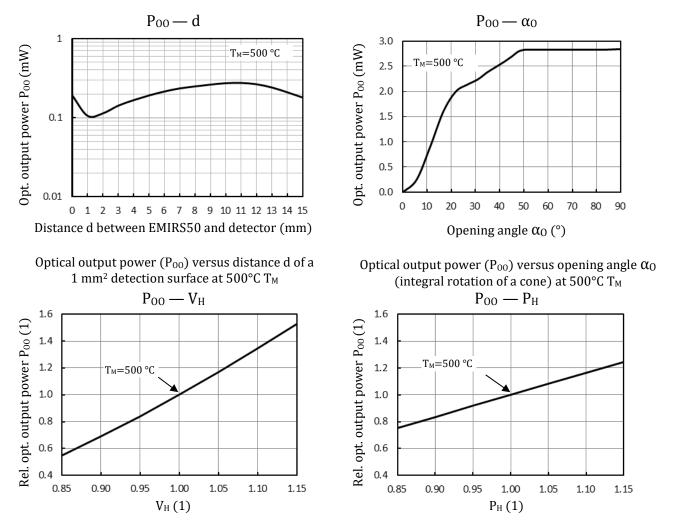


Relative change of membrane temperature (T_M) by changing heater voltage (V_H)

 $\label{eq:mean1} Mean^1 \mbox{ and upper bound of heater power } P_H \mbox{ vs. cold} \\ resistance \mbox{ RC}_{22}$



Relative change membrane temperature (T_M) by changing heater power (P_H)

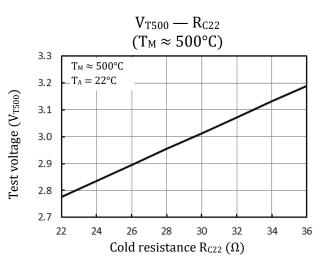

¹ Recommended operation mode $T_M = 460^{\circ}$ C, which ensures 95% confidence that the maximum temperature $T_M = 500^{\circ}$ C is not exceeded.

■ Typical Optical Characteristics (RO, T_A = 22°C)

Hemispherical spectral emissive power of EMIRS50 chip surface with a typical emissivity (mean from 2 to 14 $\mu m)$ of $\epsilon{=}0.85$

Relative change of optical output power (P_{00}) by changing heater voltage (V_H)

Relative change of optical output power (P_{00}) by changing heater power (P_H)


■ Specified Ratings at Test Voltage V_T (on-time ≥ 20 ms, $T_H = T_A = 22^{\circ}C$)

Parameter	Symbol	Condition	Typical value	Unit
Test voltage (for $T_M \approx 500^{\circ}$ C)	VT	$T_H = T_A = 20^\circ C$	0.0295 * RC22 + 2.1271	V
Optical output power (after 20 ms on)	P ₀₀	after $\ge 20 \text{ ms } V_T \text{ on time}$, $T_P = T_A = 22^{\circ}C$	4.50	mW

Note: Other optical output specifications are possible by customer specific requirements (e.g. spectral ranges).

Note: Diagram $V_{T500C} - R_{C22} | (T_M \approx 500^{\circ}C)$ Defined test voltage V_T for specified ratings:

- 1. Determine electrical cold resistance R_{C22} of the EMIRS device at $T_A=22$ °C
- 2. Drive the device with $V_{\rm T}$ for each $R_{\rm C}$ as shown in this diagram.
- 3. Ratings are only valid for $T_P = T_A = 22^{\circ}C$ and after 20 ms on-time.

Test voltage V_T versus electrical cold resistance R_{C22} at $T_A = 22\ensuremath{^\circ C}$